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Within the framework of reduced-dimensionality quantum scattering theory, we employ Bowman’s adiabatic
rotation approximation to describe reactive systems that have symmetric-top geometries during the entire
collision process. The results are compared with the approach of shifting the total energy by a characteristic
rotational energy. Initial state-selected and total thermal rate constants have been computed for the complex-
forming gas-phase reaction Cl- + CH3Cl′ f ClCH3 + Cl′-. At room temperature, we find a significant
contribution from energetically high vibrational modes. The dependence of the cross-sections on the different
angular momenta is analyzed in detail, and high total angular momenta are found to be of considerable
importance. The influence of adiabatic azimuthal rotation on the rate constants turns out to be small compared
to other effects. In addition, we use a new model to account for the asymmetric modes not explicitly contained
in the scattering calculations. The difference to the only available experimental value confirms our conclusion
that the Cl-C-Cl′ bending modes are of major importance for this reaction.

I. Introduction

For reactions involving polyatomic molecules, the calculation
of converged quantum-mechanical reaction probabilities and
cross-sections is a formidable task. Usually, only a selection of
the internal degrees of freedom of the system can be considered.
By employing simple energy-shifting procedures,1-6 the calcula-
tion of thermal rate constants is possible by including the degrees
of freedom which are not explicitly taken into account quantum-
mechanically. Moreover, the overall rotational motion is usually
considered by shifting the reaction probability for total angular
momentumJ ) 0 by the rotational energies of the transition
state complex. This procedure could be applied quite success-
fully for reactions proceeding over a simple barrier, while for
complex-forming systems, where the reaction probability is
governed by sharp resonance features,J-shifting is highly
questionable.

With a more sophisticated approach in reduced-dimensionality
quantum scattering calculations, approximate probabilities for
J * 0 can be obtained by applying the rotating-line approxima-
tion (RLA)7 that has been widely used in the past. This method
is suitable for collinear reactions with a linear transition state
complex and thus a single rotational constant. However, most
reactions involving polyatomic molecules do not proceed via
transition states with collinear alignment of all nuclei. For
example, for symmetric tops, the projection ofJ on the
molecular axis of symmetry has to be taken into account. In
this work, we modify the adiabatic rotation approximation
(ARA) advocated by Bowman8-10 to a simplified version, the
rotating (symmetric) top approximation (RTA), which can be
applied in the calculation of rate constants from reduced-
dimensionality quantum scattering data for true symmetric-top
geometries during the entire collision process (not only at the
transition state).

Complex-forming bimolecular reactions are particularly chal-
lenging for studying the applicability of such dimensionality-

reduced models, because they have turned out to be very
sensitive with respect to shifting procedures. Prototypes for this
class of reactions are gas-phase nucleophilic bimolecular
substitution (SN2) reactions.11-14 In particular, the halogen
exchange Walden inversion reactions

where X and Y are halogen atoms have been investigated in
detail both from the experimental and the theoretical side (see
refs 15-47 and references cited in refs 11-14). Because of
the long-range electrostatic attraction between the collision
partners, the depths of the entrance and exit channel wells on
the potential energy surface (PES) are considerable (ca. 0.5
eV).11-16,23Detailed quantum dynamical studies38,39,41,43,44have
given evidence that very sharp resonance structures dominate
the dynamics of gas-phase SN2 systems. The widths of
neighboring resonances cover a range of more than 4 orders of
magnitude. These resonances are of Feshbach type and, in
exothermic systems, e.g., Cl- + CH3Br, are also of shape type.
They are connected with the long-lived intermediates X-‚‚‚CH3Y
and XCH3‚‚‚Y- that are formed in the entrance and exit channels
of the reaction.

Experiments on the detailed, state-selected dynamics of gas-
phase SN2 reactions are scarce. Ervin et al.24 studied the
promotion of the symmetric reaction

by kinetic energy, employing guided ion beam tandem mass
spectrometry. Making use of the tandem flowing afterglow-SIFT
technique, Bierbaum and co-workers17 could determine the
thermal rate coefficient for this reaction at 300 K to bek )
(3.5 ( 1.8) × 10-14 cm3 s-1.

Computationally, Hase and co-workers19-22,26,27,29,37pointed
out in their work on the classical dynamics of gas-phase SN2
reactions that the coupling between the inter- and intramolecular
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X- + CH3Y f XCH3 + Y- (1)

Cl- + CH3Cl′ f ClCH3 + Cl′- (2)
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modes of the collision complexes is only weak, causing
inefficient energy transfer.

Total quantum mechanical cross-sectionsσ(E) can be obtained
as weighted sums over reactions probabilitiesPJ(E) for all total
angular momentaJ at given energyE. In a recent paper, Hennig
and Schmatz45 reported four-mode quantum scattering calcula-
tions on initial state-selected total cross-sections and the rate
constant for the above SN2 reaction (2). After reducing the
dimensionality, the system was studied under the restriction that
C3V symmetry is maintained throughout the course of reaction.
It turned out that rotational effects must play a crucial role in
the dynamics.

It is now important to see how the results change when the
rotating-top approximation is employed instead of the rotating-
line approximation. Furthermore, the rate constant calculation
can be extended by a more accurate inclusion of the high-
frequency modes not yet explicitly incorporated in the model.
Moreover, a thorough analysis of the convergence of rate
constants with respect to total angular momentum quantum
numberJ in the J-shifting and RTA approximations is very
useful to understand the limitations of the models. Finally, a
detailed analysis of the contributions of the various initial
vibrational states to the rate constants at different temperatures
should shed more light on the underlying dynamics.

The paper is organized as follows: In section II, we introduce
the RTA and briefly describe the Hamiltonian and the reactive
scattering formalism as well as the reduced-dimensionality
theory to recover the full-dimensional thermal rate constant;
furthermore, numerical details of our computations are given.
Section III presents the results and their discussion. Finally,
section IV contains our conclusions. Throughout this work,
energies are quoted in wavenumber units.

II. Theory

A. Rotating-Top Approximation. Within the rotating-line
approximation (RLA)7 for collinear reactions formulated in
hyperspherical coodinates, a centrifugal term is added to the
scattering Hamiltonian forJ ) 0, ĤJ)0,

so that reaction cross-sections can be calculated. Here,J is the
total angular momentum quantum number. For true symmetric-
top systems, this model can be extended to a rotating-top
approximation, where we add the term

with -J e K e J. Here,A andBeff denote the two rotational
constants of a prolate symmetric top,

and

where theqi values are the perpendicular distances of the nuclei
of massmi from the molecular axis of symmetry.

It has to be emphasized that this Hamiltonian can be derived
equivalently from the more general adiabatic rotation ap-
proximation (ARA) of Bowman.8-10 In this method, the
rotational energy of the collision system is calculated at a given
configuration, and the resulting (adiabatic) rotational energy is
then added to the potential energy, forming an effective
potential. Bowman’s method in turn relates to the optimum
helicity conserving approximation of McCurdy and Miller.48 For
the complex-forming system O(1D) + HCl, the ARA has been
used to determine the rotational barriers.49 Moreover, the ARA
has been successfully applied to triatomic reactive scattering
by other groups, both within the time-independent (for Cl+
H2 and F + H2)50 and time-dependent (for N+ + H2)51

approaches. Note that in ref 50 a hyperspherical coordinate
coordinate system was also used. In the present approach, the
diagonalization of the inertia tensor is not necessary because in
the given reduced-dimensionality model, the system is always
a true symmetric top. In this sense, our approach is also closely
linked to the centrifugal sudden approximation (CSA).52,53

B. Hamiltonian. Within the dimensionality-reduced 4D
model described in detail in refs 43 and 44, we employ aC3V
symmetric approach and hence study the reaction

In eq 7,Vi andVi′ (i ) 1, 2, 3) denote the quantum numbers of
the symmetric C-H stretching (V1, V1′), the umbrella bending
(V2, V2′), and the C-Hal stretching (V3, V3′) vibrational modes
in reactant and product methyl halides, respectively.

We describe the totally symmetric dynamics of the methyl
group by orthogonal coordinatesq andz (see ref 43 for details);
employing Jacobi coordinates for the C-Hal stretching degrees
of freedom completely decouples the kinetic energy. After mass-
scaling and transformation to hyperspherical coordinatesF and
δ,54-59 the completely orthogonal Hamiltonian

is obtained. The latter four terms including the potential define
the three-dimensional (3D) so-called surface HamiltonianĤsurf

that only parametrically depends on the hyperradiusF. The
reduced masses are given byµ1 ) [mXmCH3mY/(mX + mCH3Y)]1/2,
µ2 ) 3mHmC/(3mH + mC) and µ3 ) 3mH, wheremC and mH

denote the masses of the isotopes12C and1H. In the present
case,mX ) mY ) m35Cl. For the SN2 reaction, we obtain theA
rotational constant to be

whereq ) rCH sin θ. Here,θ is the H-C-Y angle andrCH is
the C-H distance of all three C-H bonds.

C. Reactive Scattering Formalism. For given angular
momentum quantum numbersJ andK and total energyE, the
Schrödinger equationĤJKΨJK(F, δ, z, q) ) EΨJK(F, δ, z, q) is
solved in two steps to obtain the partial wavesΨJK. In every
sector, we expand the partial waveΨn′

JK for initial staten′ in
close-coupling form44

ĤJ ) ĤJ)0 +
p2J(J + 1)

2µF2
(3)

ĤJK ) ĤJ)0 + Beff(F)[J(J + 1) - K2] + A(F)K2 (4)

Beff(F) ) p2

2µF2
(5)

A(F) )
p2

2∑
i

miqi
2(F)

, (6)

X- + CH3Y(V1, V2, V3) f XCH3(V1′, V2′, V3′) + Y-. (7)

Ĥ ) - p2

2µ1
( ∂

2

∂F2
+ 1

4F2) - p2

2µ1F
2

∂
2

∂δ2
- p2

2µ2

∂
2

∂z2
- p2

2µ3

∂
2

∂q2
+

V(F, δ, z, q) (8)

A(F) ) p2

6mHq2(F)
(9)

Ψn′
JK(F; Fi; δ, z, q) ) F-1/2∑

n)1

N

gn′n
JK(F; Fi)Φn(δ, z, q; Fi) (10)
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with N denoting the total number of channels. As described in
detail in ref 44,Ĥsurf is diagonalized in a suitable potential
optimized (PO) sinc-DVR basis.60,61TheR-matrix method62 is
employed for the propagation of the radial functionsgn′n

JK.
Overlap matrices between eigenfunctions of adjacent sectors
are computed only once and are then used in the subsequent
R-matrix propagations for all values ofE, J andK. Boundary
conditions in the asymptotic region of the potential are applied
according to ref 45. TheR-matrix propagation is repeated for
all values ofJ andK possible for total energyE.

The K-dependent reactive scattering cross-sections are then
given by

with Pi,f
JK(E) ) |Si,f

JK(E)|2. Note that the summation starts atK,
not zero. The collective quantum numbersi ) (V1, V2, V3) and
f ) (V1′, V2′, V3′) denote the initial and final states, respectively,
of CH3Cl. Here,km

2 is given by

with εm the asymptotic energy of channelm, andE - ε ) Etrans.
D. Reduced-Dimensionality Calculations of the Thermal

Rate Constant.By employing the full-dimensional cumulative
reaction probability

the thermal rate constant can be calculated exactly by

where h and kB are Planck’s and Boltzmann’s constants,
respectively, whileQr ) QintQtrans is the partition function per
unit volume for the reactants.

The dimensionally reduced (RD) theory for the calculation
of thermal rate constants is based on energy-shifting procedures
for the modes that are not treated explicitly.1-6 Our C3V model
for halogen-exchange SN2 reactions considers the four modes
of a1 symmetry explicitly, while the influence of the other modes
is taken into account by energy shifting

where the indexk collectively denotes the quantum numbers
of the four doubly degenerate (e symmetry) vibrational modes
of the transition state complex that are not explicitly included
in the 4D RD model. The vibrational energy levels of the
transition states,Ek

†, are measured relative to zero-point energy
and are calculated for an ensemble of eight harmonic oscillators.

In theJ-shifting/K-shifting approximation,10 only the reaction
probability PJ)0(E) ) ∑i,fPi,f

J)0, summed over all initial and
final states, is determined forK ) 0 and shifted by the rotational
energies of the transition state according to

Here,EJK is the symmetric-top energyB†J(J + 1) + (A†-B†)K2

with A† and B† being the rotational constants of the prolate
symmetric-top saddle point species. Employing this approxima-
tion, one obtains

whereQred
† denotes the partition function of the four degener-

ate internal modes in the transition state, whileQrot
† is the

corresponding rotational partition function.Qtrans is the 3D
translational partition function, andQint denotes the partition
function for all internal degrees of freedom of the reactants,
i.e., for all vibrational modes and rotations of CH3Cl.

The quantity∆0 denotes the difference of the zero-point
energies between the saddle point structure and the reactant with
respect to the fouremodes. Thus,∆0 recovers the vibrationally
adiabatic ground-state barrier height of the full-dimensional PES.
In the RLA, reaction probabilities are calculated for eachJ
individually by using the HamiltonianĤJ. Usually,K is set to
zero in this calculation, and probabilities forK > 0 are obtained
by an analogous energy-shifting procedure (K-shifting)

for K ) -J, ..., J. EK is the azimuthal part ofEJK, EK ) (A† -
B†)K2. This results in theK summation still being included in
the energy integration when computing the rate constant, cf. eq
13 in ref 45.

In the RTA, we instead calculate reaction probabilities for
each energetically allowed combination ofJ andK by employing
ĤJK, proceeding by

and thus obtaining for the rate constant

Each of these models also allows one to compute state-
selective rate constants by specifying an initial statei and
summing only over the final statesf.

It should by noted that, in addition to eq 18, it is also possible
to compute reaction probabilities forK > 0 from those forK )
0 by shifting to the corresponding translational energy

wherePK)0 is obtained by summing over allPJ,K)0, andEtrans
K

) B(Fend)K + A(Fend)K2 is the energy difference betweenK )
0 and an arbitraryK for J ) K at the final hyperspherical radius
Fend(the first term in this expression becomes vanishingly small
for F f ∞). The first approach as described in eq 18 refers to
the transition state and is thus appropriate for the numerator in
the expression used to compute rate constants, whereas the

σi,f
K(E) )

π

ki
2
∑
J)K

∞

(2J + 1)Pi,f
JK(E) (11)

km
2 )

2µ1

p2
(E - εm) (12)

Pcum
full (E) ) ∑

i,f
∑
J)0

∞

(2J + 1)Pi,f
J (E) (13)

k(T) ) 1
hQr

∫0

∞
e-E/(kBT) Pcum

full (E) dE (14)

Pfull(E) ≈ ∑
k

P4D(E - Ek
†) (15)

PJ(E) ) ∑
K)-J

J

PJ)0(E - EJK). (16)

k(T) )
Qred

† Qrot
† e-∆0/(kBT)

hQintQtrans

∫0

∞
e-E/(kBT)∑

i, f

Pi,f
J)0(E) dE (17)

PJK(E) ≈ PJ(E - EK) (18)

Pi,f(E) ) ∑
J)0

∞

(2J + 1) ∑
K)-J

J

Pi,f
JK(E)

) ∑
J)0

∞

(2J + 1) ∑
K)0

J

(2-δK0)Pi,f
JK(E) (19)

k(T) )
Qred

† e-∆0/(kBT)

hQintQtrans

∫0

∞
e-E/(kBT)∑

J)0

∞

(2J + 1) ×

∑
K)0

J

(2 - δK0) ∑
i, f

Pi,f
JK(E) dE. (20)

PK(E) ≈ PK)0(E - Etrans
K ) (21)
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latter procedure aims at the asymptotic configuration. It is
therefore used in the comparison of cross-sections for different
K values at the same translational energy. Both will be called
K-shifting with the distinction given by the context.

E. Asymmetric Mapping. All of the above models
essentially map the degrees of freedom not explicitly considered
onto the vibrational ground state; see eq 15. For those degrees
of freedom which are expected to actively take part in the
reaction, this is quite a poor approximation and used mainly
because of the absence of a suitable alternative. However, for
the two doubly degenerate vibrations of the methyl group, a
reference to the corresponding explicitly treated totally sym-
metric modes is feasible. While a mapping to the ground state
will underestimate the reactivity, using the symmetric modes
yields an upper bound for the influence of these degrees of
freedom.

In extension of eq 15, we need to specify state-selective
probabilitiesPi(E) for an initial statei, summed over all final
states, by the ansatz

where i′ is the explicitly treated state corresponding toi, i.e.,
all quanta that do not correspond to an explicitly treated mode
are removed and each quantum in one of the two doubly
degenerate asymmetric internal modes of the CH3 group is
replaced by one in the corresponding totally symmetric mode.
As in eq 15,E† denotes the vibrational energy levels of the
transition states of all modes mapped onto the ground state,
while R incorporates the energy difference between the asym-
metric and symmetric modes at the transition state. Both
energetic quantities are evaluated in the harmonic approximation.
As R < 0, this will effectively reduce the probabilities in the
asymmetric modes compared to the symmetric ones, which is
consistent with their expected behavior.

As a consequence for every initial statei ) (V1, V2, V3), k )
0, ..., V1 of the V1 quanta in the symmetric C-H stretching
vibration can be created by originally storing them in its doubly
degenerate counterpart mode. For a givenk, this will result in
a factor (k + 1)e-kR1/(kBT) where R1 ) -192 cm-1 is the
difference between the harmonic wavenumbers of the symmetric
and asymmetric C-H stretching modes at the transition state;
the exponential term stems from the energy shift byR when
integrating over energy in eq 22, while the factork + 1 accounts
for the degeneracy. The same consideration holds for theV2

quanta in the umbrella mode, which can be can be created by
originally storingl ) 0, ...,V2 quanta in the doubly degenerate
asymmetric counterpart; here, the energy shift amounts tolR2

with R2 ) -400 cm-1 being the difference of the symmetric
umbrella mode to the asymmetric H-C-H bending vibration
at the transition state.

By summing overk and l, we conclude that the probability
Pi(E) for each initial statei ) (V1, V2, V3) will be weighted by
a factor

Using

for n ) 0, 1, 2, ..., we finally obtain for the rate constant

Dependence onJ and K including the summation has been
suppressed in eq 25 for clarity and must be included in
accordance with each of the models presented in section 2.4.
Q(-e)

† is the partition function for the degrees of freedom at the
transition state appropriate for the selected model excluding the
two doubly degenerate asymmetric internal modes of the methyl
group. In our RTA model,Q(-e)

† contains the partition function
of the two remaining doubly degenerate modes at the transition
state, i.e., the Cl-C-Cl bending and the CH3 rocking modes.

F. Numerical Details.The 4D PES from ref 43 with classical
barrier height of 984 cm-1 is employed with the asymptotic
energy set to zero. Unless stated otherwise, all energies in the
dynamics calculations are counted from the asymptotic vibra-
tional ground state of CH3Cl.

All parameters used in the quantum scattering calculations
reported in this work are collected in Table 1 of ref 45. In the
propagation of the partial waves, the number of channels actually
taken into account (all open channels and ten additional closed
channels) depended on the sectorFi. In the potential wells, a
lower number of channels was chosen for higher energies,
because the energetically highest computed state in this region
lies at ca. 3250 cm-1. With this restriction, all channels below
an energy of 3220 cm-1 were additionally included in each
sector in computations with an energy below that limit. The
S-matrices and thus reaction probabilities have been computed
for total energiesEtot up to 6000 cm-1 above the asymptotic
vibrational ground state of CH3Cl.

The energetic resolution∆E was at least 10 cm-1 with a much
finer grid in the low-energy regime:∆E ) 10-1 cm-1 for Etot

e 250 cm-1 and ∆E ) 1 cm-1 for 250 cm-1 e Etot e 1600
cm-1. Convergence especially in the low-temperature regime
has been checked by comparison with rate constants obtained
from a refinement forK ) 0: ∆E ) 10-2 cm-1 for Etot e 100
cm-1 and∆E ) 1 cm-1 up toEtot e 1720 cm-1. This refinement
results in an increase of the rate constant by a factor of at most
2.5 for very low temperatures and hardly any change for
temperatures above 100 K.

Rotational partition functions were calculated in the rigid rotor
model by explicit summation. For a givenF, V(δ, z, q; Fi) was
minimized to obtain the optimalq(F) value forA(F).

For the highest energies considered, total angular momenta
up to ca.J ) 1200 and azimuthal angular momentaK ) 33
have been computed; in the energetic region up toEtot ) 1600
cm-1 relevant at room temperature, partial waves up to ca.J )
500 andK ) 16 still have to be considered. The computational
effort thus rises by a factor of 10-30 in the RTA model
compared toK-shifting in the RLA model; the RLA model itself
requires about 200-1000 more partial waves than the simple
J-shifting model. The total increase in CPU and storage
requirements of the RTA model compared toJ-shifting is thus
about 4 orders of magnitude. This is the reason for the much
coarser grid compared to our previous calculations: ForJ )
0,44 a computationally demanding energy grid of∆E ) 10-3

cm-1 down to∆E ) 10-12 cm-1 was necessary to resolve all
the narrow resonances. From the above considerations, it is not

k(T) )
Q(-e)

† e-∆0/(kBT)

hQintQtrans

×

∫0

∞
dE e-E/(kBT) ∑

i)(v1,v2,v3)

Pi(E)gV1+1(e
-R1/(kBT))gV2+1(e

-R2/(kBT)).

(25)

Pi(E) ≈ Pi′
4D(E - ∆0 - E† - R) (22)

∑
k)0

V1

(k + 1) e-kR1/(kBT) ∑
l)0

V2

(l + 1) e-lR2/(kBT). (23)

gn+1(q) ) ∑
k)0

n

(k + 1)qk )
1 - qn+2 - (n + 2)qn+1(1 - q)

(1 - q)2

(24)
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possible to use the same energy resolution in the RLA/RTA
model, resulting in a not fully converged resonance structure
of the individual partial waves. However, summation leads to
an averaging and broadening of the resonances. As demonstrated
by the analysis of the contributions of individual angular
momenta (see below, Figure 9), the rate constants, which are
additionally energy-averaged quantities, are correct in the order
of magnitude for low temperatures; for room temperature and
above, the obtained values are converged with respect to the
energetic resolution.

III. Results and Discussion

A. K-Dependent Reaction Cross-Sections.Figure 1 graphi-
cally displays the variations of the two most important structural
parameters of theC3V symmetric methyl group, the rotational
constantA(F) and q(F), the distance between one hydrogen
nucleus, and the molecular axis of symmetry. For each value

of the hyperradiusF, the geometries were optimized with respect
to energy. The formation of the complex results in a slight
shortening of the C-H bond distance and consequently ofq,
whereas at even shorter distances, the H-atoms are pushed away
by the energetically unfavorably close Cl-atoms. The resulting
F-dependent variation ofA influences the final reaction cross-
sections via the changes of the available kinetic energy during
the propagation.

The cumulative reaction cross-sections summed over all final
states and all possible values of the azimuthal quantum number
K, ∑f∑Kσi,f

K(E), are shown in Figure 2. The small cross-section
for the reaction out of the vibrational ground state and those
for initial excitation of the C-Cl and C-H stretching modes
[(0, 0, 1) and (1, 0, 0)], as well the combination mode (1, 0, 1),
are displayed as a function of translational energy on a
logarithmic scale in Figure 2a. Figure 2b shows reaction cross-
section sums as a function of total energy when the vibration
of the broken C-Cl bond is excited by one to eight quanta,
while Figure 2c displayssfor the same range of total energys
the cross-section sums for initial excitation of the umbrella
bending mode with one to four quanta. Finally, some cross-
section sums for initially excited combination modes of C-Cl
stretch and umbrella bend are shown. The data can be compared
to theK ) 0 cross-sections from ref 45. Some of the differences
are simply caused by the different setting: In contrast to ref
45, the data in Figure 2 has been averaged over intervals of 80
cm-1, resulting in less structure and acuteness. As we show
cumulative cross-sections summed over allK, the scale of the
ordinates changes by several orders of magnitude. However,
some of the features in Figure 2 could not be so easily predicted
from our previous calculations: The envelope of the maxima
becomes smoother; in Figure 2b, the increase of the maxima
has become much more monotonic (dips atV3 ) 3, 5,

Figure 1. Changes of the orthogonal coordinateq and the symmetric-
top rotational constantA during the reaction (as a function of the
hyperradiusF).

Figure 2. Initial state-selected total reaction cross-sections for the reaction Cl- + CH3Cl′ (V1, V2, V3) f ClCH3 + Cl′-, summed over all accessible
product channels and all values of the quantum numberK. The data are averaged over intervals of 80 cm-1. (a) As a function of translational
energy, (b-d) as a function of total energy, counted from the classical asymptotic limit. (a) Reaction out of the reactant vibrational ground state
and excited states (0, 0, 1), (0, 1, 0), (1, 0, 0) and (1, 0, 1). (b) Excitation of the C-Cl stretching modeν3 with up to eight quanta. (c) Excitation
of the umbrella bending modeν2 with with up to four quanta. (d) Excitation of selected combination modes.
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and 7 are missing). Also in Figure 2d, some curves change order
with respect to their maxima [e. g., (0, 2, 2) and (0, 2, 3)]. For
large values of the total energy, nearly all curves show a
deviation from the 1/k2

i behavior, which is explained by the
presence of several of these prefactors due to the summation
over different initial states (differentK). Finally, in Figure 2a,
the C-H-stretching mode does not reach the spectator mode
regime valid for higher translational energies in contrast to ref
45, where such a spectator-mode behavior can be observed
within the displayed energy range. We attribute this to the
contribution of cross-sections with higherK and thus lower
translational energy.

To assess the influence of different values ofK on the cross-
sections, we use the quantity

that gives the relative difference of these state-selected cross-
sections forK and K - 1, weighted by the difference of the
squares of the azimuthal quantum numbers. In Figure 3, this
relative difference is plotted for the reactants in their vibrational
ground states. The difference is large for low translational
energies and decreases with both energy and quantum number
K. Particularly large differences can be observed betweenK )
0 andK ) 1 (more than 75% deviation betweenEtrans ) 400
and 1000 cm-1). ForEtrans> 1400 cm-1, the differences rapidly

converge to aK-independent value which rises slowly with
energy. At high translational energie (see Figure 3b), this value
is on the order of 0.2-0.1%. A similar situation is found for
initial excitation of the umbrella bending mode with one
quantum (Figure 4). Here, however, the deviations are much
smaller (at most up to 10% with fast convergence down to
values below 1% forEtrans> 1000 cm-1). Note that these values
are very similar to those found for the ground state. Analogous
observations can be made for other initial states and higher
values ofK, indicating a universal behavior especially for larger
K and higher translational energies.

The difference between the cross-sections summed over all
K values from the rotating-top approximation and fromK-
shifting are shown in Figure 5. In the latter model, the cross-
section from ref 45,σK)0, is shifted byEtrans

K , omitting the
contributions fromJ < K, and the resulting curves are summed
up. While the results are very similar qualitatively, in particular
for vibrational state (0, 0, 0), the differences are on the order
of a factor of 2 [for (0, 1, 1)] or even larger [for (1, 0, 0)].
Consistent with Figure 4, theK-shifting cross-sections are larger
(they would yield a relative difference of zero instead of a
negative value), and the difference rises with energy, i.e., the
available values forK. We note that the pronounced structure
of the K-shifting cross-sections is due to interpolation effects.

B. Rate Constants.The rate constants calculated according
to the theory presented above are shown in Figure 6 for the
temperature range 10< T < 1000 K, together will two
enlargements (from 50 and 285 K, respectively, to 1000 K). In
addition to our reduced-dimensionality quantum treatment, we
also present results obtained with theJ andK shifting models,
with all CH3Cl rotations excluded and from transition state
theory (TST) with two different potential surfaces. Except for

Figure 3. Relative deviationdi
k(E) of the state-selected cross-section

for initial state (0, 0, 0) for azimuthal quantum numberK from the one
for K - 1, weighted by the difference of the squares of the azimuthal
quantum numbers (see the text). Each cross-section is evaluated at the
same translational energyE. The data are averaged over 600 cm-1.

di
k(E) )

σi
K(E) - σi

K-1(E)

(2K - 1)σi
K-1(E)

(26)

Figure 4. Same as Figure 3 for initial vibrational state (0, 1, 0).
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the RD quantum curve, the results in Figure 6a have already
been presented in ref 45. Note that the “red. dim. quantum”
curve from this reference is labeled here by “K-shifting, lower
resolution”. Despite the extreme computational effort of the
calculations (see section II. E), we now have further increased
the energetic resolution down to 10-1 cm-1. All curves show a
linear Arrhenius behavior in both the high- and low-temperature
regimes with a slope greater in magnitude in the first limit,
which is characteristic for a reaction with tunneling through a
single barrier.63

In Figure 6b, the influence ofJ-shifting andK-shifting is
shown. While increasing the resolution has quite a strong effect
on the rate constant below room temperature, inclusion ofK
via the RTA has only a small effect, yielding a very slight
decrease of the rate constant, i.e., farther away from the
experimental value. Thus, the azimuthal rotation is of minor
influence in this system, in accordance with the expectation from
the overall small decrease of the cross-sections in the RTA
model (cf. Figure 5).J-shifting, on the contrary, leads to
significantly lower rate constants in all temperature ranges.
These findings strongly support our conclusions drawn in ref
45 that (a)J-shifting is not appropriate for complex-forming
reactions and (b) rotations (j rotations of the reactant and product
symmetric tops) play a crucial role in the system. For chemically
relevant temperatures starting from 250 K, the results from
K-shifting and RTA are almost indistinguishable on the given
scale, and resolution effects become negligible.

It remains to study the influence of the asymmetric modes
(higher-frequency doubly degenerate C-H stretching and
H-C-H bending modes) on the rate constants (see Figure 6c).
We only present the combination with the RTA model and
observe a slight increase ofk(T) where this effect becomes
somewhat more pronounced for higher temperatures. The effect
is significantly smaller than that going fromJ-shifting to RTA.
Consequently, the asymmetric modes will have only a slight
effect on the rate constants within this temperature range, as
they are already expected to be largely overestimated in the
asymmetric mapping model, and thus, their explicit inclusion
cannot explain the discrepancy to the experimental value. Note
that, in addition, the symmetric modes do not yield the dominant
contribution to the rate constant (cf. Figure 7).

The influence of asymmetric modes compared to their
symmetric counterparts has been studied explicitly by several

others. Wang and Bowman found the symmetric stretch of the
H2O molecule in the OH+ H2 f H + H2O reaction to be
more populated than the corresponding antisymmetric mode,64

whereas in the H+ C2H2 f H2 + C2H reaction, the
antisymmetric C-H stretch showed a higher effectivity to
promote the reaction.65 In the O+ CH4 f OH + CH3 reaction,
which is the most comparable one to our investigations,
calculations by Clary and Palma66 resulted in a smaller reaction
probability for the antisymmetric C-H stretch, but of compa-
rable magnitude. Experiments on the Cl+ CH4 f HCl + CH3

reaction67 show almost indistinguishable state-selected dif-
ferential cross-sections and rovibrational distributions when the
reactants are excited either in the symmetric or antisymmetric
C-H streching vibration. However, in all of these reactions,
the antisymmetric mode is intrinsically coupled to the reaction
coordinate, which is not the case for our reaction.

In Figure 7, the contributions of the various initial vibrational
states to the total rate constant are analyzed in detail. The various

Figure 5. Comparison of cumulative state-selected cross-sections,
summed over all final states and all energetically accessible states with
azimuthal rotation labeled byK. The dotted curves represent the data
obtained by the rotating-top approximation [cf. eq 11], while the solid
ones are computed from the cross-section forK ) 0 by adding this
curve to itself for everyK with the appropriate energy shift, omitting
the contributions fromJ < K. The oscillations are due to interpolation
effects. All curves are averaged over 80 cm-1.

Figure 6. Thermal rate constant for the gas-phase SN2 reaction Cl- +
CH3Cl′ f ClCH3 + Cl′-. Eight different models are applied (for a
description see the text).
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curves show a linear Arrhenius behavior within the selected
temperature range and a lot of crossings; the ground state itself
shows two different slopes, as does the total rate constant (with
a different bridging region, however), cf. ref 63. This is very
different compared to non-complex-forming bimolecular reac-
tions. A comparable system (however with light atoms only),
the abstraction reaction between a hydrogen atom and methane/
methanol, was recently studied by Kerkeni and Clary with a
state-selective analysis of the rate constants.68,69 A direct
comparison of the overall behavior is difficult, because the
higher barriers in these reactions cause the relevant interesting
features to appear at higher, rarely investigated temperatures,
and the smaller number of degrees of freedom considered yields
less curves.

The relative contributions of the different initially excited
vibrational states are shown in Figure 7b. The individual curves
show a strikingly similar shape. Under thermal conditions, the
state with two quanta in the C-Cl stretching mode (0, 0, 2) of
the reactant molecule contributes most (35%), followed by the
umbrella bend (0, 1, 0) and one or three quanta in the C-Cl
stretch (0, 0, 1)/(0, 0, 3) (15% each). The combination mode
(0, 1, 1) and the vibrational ground state (0, 0, 0) contribute
with 10% each. In general, excitations with quanta in the
umbrella mode contribute less than pure excitations of the C-Cl
bond, which is one of the reasons for the low influence of the
asymmetric modes (cf. Figure 6c). Note that the (0, 0, 2) mode
opens at a total energy of 1432 cm-1 above the ground state of
CH3Cl, which is about seven times as large as the average
thermal energy at room temperature. Similar observations hold
for other temperatures, which infers that fairly high energies

are relevant for this reaction as the corresponding modes are
much more effective in promoting the reaction than the low-
lying ones.

To shed more light on the contribution of different transla-
tional energies on the rate constants, we evaluate the ratiokE(T)/
kEmax(T) by computing the integral in eq 20 at translational energy
E. The quantityEmax denotes the highest energy for which cross-
sections have been computed in the present work. Results are
shown in Figure 8 for three different temperatures (150, 300,
and 1000 K). For each temperature, the major contribution to
the rate constant stems from an energetic region far above the
average thermal energy. At room temperature, about 80% can
be traced back to the translational energy above 1400 cm-1

where the (0, 1, 0) and (0, 0, 2) modes open up, which is
consistent with Figure 7. ForT ) 1000 K, we conclude that
the value for the rate constant is not fully converged, as the
slope of the displayed curve does not approach zero forEmax)
6000 cm-1 which is still nine times as large as the average
thermal energy at this temperature. The negative curvature above
E ) 5000 cm-1 implies convergence on the order of magnitude,
however, which justifies the inclusion of these high temperatures
in our plots.

In Figure 9, the cumulative contributionsc of angular
momenta to the rate constant are given as a function of 1/T.
The unusual scaling of the ordinate results from plotting 100%
- c on a logarithmic scale in order to demonstrate the deviation
of the RTA/RLA model (c,d) fromJ-shifting (a,b); in the latter
model, the resulting curves are straight lines as inferred by the
rotational partition function. For each model, two different
temperature regimes are shown. The ordinates are labeled by
the values ofc itself. If curves are not labeled, the maximum
value ofJ increases by 10 for each curve from the first to the
last corresponding label. For temperatures starting atT ) 10
K, we observe a very irregular pattern and several jumps with
respect to the individual contributions of the total angular
momenta. These features cannot be attributed to a physical
origin, but are consequences of the limited energy grid size:
The individual probabilitiesPJ(E) do not have a fully resolved
resonance structure, resulting in under/overweighing of the
individual contributions. However, summation of these yields
results that are also reliable for low temperatures in the order
of magnitude: Even for the most striking irregularity atT )

Figure 7. Contribution of the individual reactant vibrational states to
the thermal rate constant in the reduced-dimensionality quantum model,
i.e., summed over allJ andK. (a) Absolute state-selected rate constants.
(b) Percentage contribution of the reactant vibrational states.

Figure 8. Contribution of different translational energies to the rate
constants atT ) 150 K, T ) 300 K, andT ) 1000 K. For each
temperature, the graph shows the ratiokE(T)/kEmax(T), wherekE(T) is
obtained by cutting the integral in eq 20 at translational energyE and
Emax is the highest translational energy for which cross-sections have
been computed. Opening of the first three stretching modes (0, 0, 1),
(0, 1, 0) and (0, 0, 2) is indicated by the vertical lines.
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50 K where the large gap betweenJ ) 140 andJ ) 150 is
clearly due to the energy resolution, the contribution ofJ e
140 is still 50%. The increasing importance of higher angular
momenta shows a clear deviation from the linear behavior in
the J-shifting, which for values fromT ) 100 K up to room
temperature is due to the dominant contributions of energetically
higher modes; the smaller amount of kinetic energy left in these
modes favors smaller angular momenta. From a starting point
at T ) 250 K, the distances of the curves become increasingly
regular, indicating less importance of the energy resolution in
this temperature region, consistent with Figure 6. AboveT )
400 K, the curves become straight lines as in theJ-shifting
model with the only difference that more angular momenta
contribute to the final value. This observation, which is also
valid for the low-temperature regime, explains the overall lower
rate constants obtained byJ-shifting.

IV. Conclusions

(1) On the basis of Bowman’s adiabatic rotation approxima-
tion in quantum reactive scattering, the rotating-top approxima-
tion is introduced that allows for explicit consideration of the
rotational quantum numberK in reduced-dimensionality calcula-
tions for reactions with true symmetric-top geometries during
the entire collision process.

(2) Time-independent quantum scattering calculations have
been carried out for the SN2 reaction Cl- + CH3Cl′ f ClCH3

+ Cl′- using hyperspherical coordinates describing the bonds
being broken and formed. The two totally symmetric modes of

the methyl group are included in the model, andC3V symmetry
is conserved throughout the reaction. By making use of the
rotating-top approximation, converged state-to-state selected
total reaction cross-sections, summed over allK-rotor contribu-
tions, could be calculated.

(3) The thermal rate constant has been calculated and
compared with the ones obtained from more approximate models
(J-shifting/K-shifting quantum and transition state theory). While
TST rate constants show fortuitous good agreement with
experiment, the physically more sound reduced-dimensionality
quantum calculations show large deviations from the only
available experimental data point.

(4) Contributions of the individualK quantum numbers in
the rotating-top approximation have been analyzed and found
to decrease the cross-sections in an overall small amount
compared toK-shifting. The resulting differences of the rate
constants are negligible with respect to the order of magnitude.

(5) A new model has been proposed to estimate the influence
of asymmetric modes when quantum results for the symmetric
counterpart are available, indicating a negligible influence on
the rate constant at room temperature.

(6) State-selected and energy-dependent rate constants have
been analyzed. The results underline the importance of certain
energetically high modes even at low temperatures, especially
those with excitations in the C-Cl-bond.

(7) An analysis of the contribution of the different total
angular momenta showed the convergence for small tempera-

Figure 9. Cumulative contributionc of angular momenta to the rate constant as a function of 1/T (see the text).
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tures to occur only via summation. The lower rate constants of
J-shifting could be traced back to contributions of higher angular
momenta.
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